(L) King Fahd University of Petroleum & Minerals

College of Computer Science and Engineering

Information and Computer Science Department

Second Semester 202 (2020/2021)

ICS 202 — Data Structures
Midterm Exam
Tuesday, 16" March 2021
Time: 120 minutes

Name:

ID#

Section:

1. This exam consists of 13 pages including (1) title page, (2) statement to ensure
non-cheating and (13) reference sheet

2. ltis required to sign your name on the (2) statement to ensure non-cheating. You
may either print and sign it or use an MS-Paint Signature (please keep it ready
before the exam).

3. Please solve this exam on this template. Use either (a) a printed version, solve
by hand and scan or (b) solve it on your PC, or (c) use a tablet-stylus
combination.

4. Please upload your solution as a pdf.

5. There will be a small penalty for solving this exam on plain paper. No
excuses in this regard.

Question # Max Points Points Earned Comments
1 [Linked Lists] 20
2 [Stacks, Queues] 20
3 [Complexity] 10
4 [Recursion] 30
5 [Binary Trees] 20
Total 100

Page 1 of 13

Approved “Student Declaration Statement
for Exam Integrity”

We wish you all the best in the exam.
Please read carefully and accept the following before proceeding to the exam.
| declare that:

¢ | will complete this assessment entirely by myself without taking any assistance
whatsoever from a person, resource or tool other than what is explicitly permitted
within the regulations prescribed for this assessment.

¢ | will not disclose, share or discuss the material of this assessment in any form
with anyone except what has been authorized.

¢ | will uphold the highest standards of honesty and integrity for completing this
assessment to the best of my knowledge.

e | am fully accountable for all rules pertaining to this assessment.

e | understand that ignorance of a rule or a principle is not an excuse for any
misconduct.

¢ | understand that engaging in an act of a misconduct would result in imposition of
penalties such as failing this course and/or a dismissal from the University.

DAY el I8 agle A8 5all 5 iy U il 61 3 s 5 JLEAY) 138 (8 Lol 5 (38 Ly oS0 Ll e
2 A
4&&9UAW}AIAQ_.QMJMAQQ‘L}A}iuai.ﬁ:éiwg&mgi‘#ﬂoindgjw@MLJ%y|‘;@ioi
‘ ‘ ‘ DAY 138 il 5 (B e s
A s Lo e Uil (add of ae SLEAY) 138 Gl sine (g (ol A8l 5l 3S i Sf Sl a @l Y Of e
HERY) 138 JLeS) 8 dal 3l s AleY) julee Jelbal 5IY) o
‘,Ju;m\@M\Mv\@géﬁx&a\sy,g?)yﬂoﬁq .
Jsa e Capai o olad A g panall (o aied ¥ LAY 138 lllaie ol dadail e sl en) @
Laalad) W a5l il sl) ca yay 38 LAY 380 8 480 3 o) AalaWL iy L8 (e Cipeat ol Gl ale e
Axaladl (e Juadl gl 5 5l 8 syl) Qs 38

Name:

Signature:

Date:

Page 2 of 13

Q. 1: (a) [14 points] Consider a singly linked list represented by the class SLL<T> as shown in the
reference sheet. Design and implement the following two methods:

(i) deleteThird which deletes the third element of a singly linked list.
(if) deleteThirdLast which deletes the third last of a singly linked list.

The effect of these methods is shown here (initial linked list):

3/|\|._.4 |._.7 |-—>8 |>_.1 |-—>2 |.—>5T

head tail

—» Nnull

[After applying myList.deleteThird()]

3 |._.4 |._.8 |.—>1 |._.2 |>—>5 _l»-»null
| T

head tail
[After applying myList.deleteThirdLast()]

3/|\ {4 [—]7 | P8 | P2 |-—>5T p—>null

head tail

Do not use the methods addToHead, addToTail, deleteFromHead, deleteFromTail
Instead, directly manipulate list nodes/pointers for both the methods.

Make sure to take care of all special cases

(If the third or third last element does not exist, just return from the method/s).

(i) public void deleteThird() {

if(head == null || head.next == null || head.next.next == null)
return;
if(head.next.next == tail) //only three elements

tail = head.next; //tail becomes the second element

head.next.next = head.next.next.next; //takes care of all cases

}

(ii) public void deleteThirdLast() {

Page 3 of 13

if(head == null || head.next == null || head.next.next == null)

return;

if(head.next.next == tail) // only three elements

{ head = head.next; return; } //delete the first element

SLLNode<T> prev = head;

while(prev.next.next.next != tail) prev = prev.next;

prev.next = prev.next.next;

return;

Q. 1(b) [6 points] What is the big-O time complexity of both your methods in terms of list size n.

Big-O Complexity of deleteThird(): 0(1)

since no traversal of list is involved

Big-O Complexity of deleteThirdLast(): 0O(n)

since list is traversed to find the third last element

Page 4 of 13

Q. 2 (a) [10 points] Write a method public static boolean isPalindrome(String s) that
determines whether an input string s is a palindrome or not. [A palindrome is a string that reads the
same forwards and backwards. For example: level is a palindrome, but lever is not]. Do not use
arrays or any other data structure for this program except Stacks. Consider using multiple stacks.

public static boolean isPalindrome(String s) {

Stack s1 = new Stack(); String s2 = new String();

for(int ix = @; ix < s.length(); ix++)

s1.push(s.charAt(ix) + “”);

while(!s1.isEmpty())

s2 = s2 + sl.pop();

return sl.equals(s2);

Q. 2 (b) [10 points] Given the following infix expression:
10 * 8 + (8 / 4 - 3)
Q) Give the equivalent postfix expression.
108 *84 /3 - +

(i) Using a stack, evaluate this postfix expression (Give contents of stack at each stage).
[The first two rows are just examples for the expression 2 3 *]

Stack Contents Operations
2] Push 2, Push 3, Remaining Expression: *
161 Pop (3), Pop (2), 3*2 = 6, Push(6)

Page 5 of 13

Stack Contents

Operations

18 | Push 10, Push 8, Remaining Expression: *
|10

| 80 Pop (8), Pop (10), 10 * 8 = 80, Push(80)
|4 | . :

18 | Push 8, Push 4, Remaining Expression: /

| 80

|2 | Pop (4), Pop (8), 8/4 =2, Push(2)

| 80

|3 | . .

|2 | Push 3, Remaining Expression: —

| 80

| —1] Pop (3), Pop (2), 2 -3 =-1, Push(-1),

| 80 Remaining Operation +

| 79 Pop (-1), Pop (80), 80 + -1 =79, Push(79)

Pop (79) : Final Answer

Page 6 of 13

Q. 3:[7 +3 =10 points] .

(@) Given the following method, how many times is MyStatement executed as a function of n.
(b) Give the big-O complexity of this code fragment in terms of O(n).

for(i = 1; i <= YN i++) {
sum[1i] 9;
for (j = 1; j <= 13 ; j++)
sum[i] = sum[i] + j; // MyStatement
}

return true;

] 3
g il:g 2= [\n (Jn +1)/2]2="("+2\T+1)

i=1 j=1 i=1

Big-0 complexity: 0(n?)

Page 7 of 13

Q. 4 [30 points: 2 + 15 + 13 = 30 points]

(a) Write the recurrence relation that represents the number of additions T(n) as a function of n in

the following method:

public static int myMethod(int n){

if(n == 0)
return 9;
else{

System.out.println(n);
return myMethod(n - 2) + n;

}

Note: DO NOT EXPAND THE RECURRENCE RELATION

(@)

T(n)=0forn=0, T(n) =T(n—2) + 1, otherwise for n > 0.

Page 8 of 13

(b) [15 points] The running time T(n) of an algorithm is represented by the following
recurrence relation:

T0)=a

T()=T(N-1)+2 +b vn>0

Where a and b are constants. Solve the recurrence relation by iteration and then
determine the big-O complexity of the algorithm.

You may find the following summation formulae useful:

n n k-1 k=1
zi:n(n+1) Zizzn(n+l)(2n+1) i:Z—% 22,:2k 1
i=1 2 i=1 6 i=0 2| 2 i=0

Solution:

T(n)=T(n—1)+D+b
_rn-2)+ =Y 1)+b]+g+b
=T(n—2)+—((n—1)+n)+2b

~[T(n- 3)+(” 2)

+b]+%((n—1)+n)+2b

:T(n—3)+§((n—2)+(n—1)+n)+3b

=T(n—k)+%((n—k+1)+...+(n—2)+(n—1)+n)+kb

By substituting k = n,

T(n) =T(O)+1(1+2+...+(n—1)+n)+nb

—a+— Z|+nb a+= (n(n+1))+ b=a+ 0D par ™ Db
) 4

Therefore, T(n) = O(n?)

Page 9 of 13

(c) Write a method: public static getMax(int[] array) that calls a private static recursive
method getMax which returns the maximum value in the array.

public static int getMax(int[] array){
int currentMax = array[array.length - 1];
return getMax(array, currentMax, array.length - 1);

(d) Write the recursive method that is called by the method you wrote in (c)

private static int getMax(int[] array, int currentMax, int index){
if(index == -1)
return currentMax;
else if(array[index] > currentMax)
return getMax(array, array[index], index - 1);

else
return getMax(array, currentMax, index - 1);

Page 10 of 13

Q. 5: (a) Given the following BSTNode class:

public class BSTNode<T extends Comparable<? super T>> {
protected T el;
protected BSTNode<T> left, right;
public BSTNode() {
left = right = null;

}

public BSTNode(T el) {
this(el,null,null);

}

public BSTNode(T el,BSTNode<T> 1lt, BSTNode<T> rt){
this.el = el; left = 1t; right = rt;
}

}
And the following instance methods of BinarySearchTree class:

public void myTraversal(){
myTraversal(root);
}

private void myTraversal(BSTNode node){

if(node !'= null){
System.out.print(node.el + " ");
myTraversal(node.left);
myTraversal(node.right);
System.out.print(node.el + " ");

}
}

What is the output of: tree.myTraversal(); if tree is the following BinarySearchTree?

837739938

Page 11 of 13

(b) Draw the resulting Binary search tree after deleting 24 by ANY deletion by copying method
from the following BST:

()
(18

gt

(1)

)

@09 e@

(c) Give the inorder, preorder, and postorder traversals of the following BinaryTree:

(5)
(1)

()

ol

Traversal type

traversal

Inorder 2, 5, 10, 13, 35, 45, 40, 8
preorder 35, 5, 2, 13, 10, 40, 45, 8
postorder 2, 10, 13, 5, 45, 8, 40, 35

Page 12 of 13

Quick Reference Sheet

public class SLLNode<T> {
public T info;
public SLLNode<T> next;
public SLLNode () ;
public SLLNode (T el)
public SLLNode (T el,
}

SLLNode<T> ptr);

public class SLL<T> {
protected SLLNode<T> head,

public SLL();
public boolean isEmpty ()
public void addToHead (T el);
public void addToTail (T el);
public T deleteFromHead() ;
public T deleteFromTail () ;
public void delete(T el);
public void printAll();
public boolean isInList (T el);

}

tail;

public class DLLNode<T> ({
public T info;
public DLLNode<T> next,
public DLLNode () ;
public DLLNode (T el);
public DLLNode (T el,

prev;

DLLNode<T> n,
DLLNode<T> p) ;
}

public class DLL<T> {
private DLLNode<T> head,

public DLL();
public boolean isEmpty () ;
public void setToNull () ;
public void addToHead (T el);
public void addToTail (T el);
public T deleteFromHead() ;
public T deleteFromTail () ;
public void delete(T el);
public void printAll();
public boolean isInList (T el);

tail;

public class Stack<T> {
private ..;
public Stack();
public Stack(int n);
public void clear();
public boolean isEmpty();
public T topEl();
public T pop();
public void push (T el);
public String toString();
}

public class Queue<T> ({
private ..;
public Queue();
public void clear();
public boolean isEmpty();
public T firstEl();
public T dequeue();
public void enqueue (T el);
public String toString();

// array or linked list

// array or linked list

6

2 _N(n+D@n+1) Z”:ig _(n(n +1)j2

Page 13 of 13

